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Abstract— We show that the problem of exact computation of
the joint spectral radius of a finite set of rank one matrices can
be reformulated as the problem of computing the maximum
cycle mean in a directed graph and hence be solved efficiently.

I. INTRODUCTION

Given a finite set of square matrices A := {A1, . . . , Am},
their joint spectral radius ρ(A) is defined as

ρ (A) = lim
k→∞

max
σ∈{1,...,m}k

‖Aσk
· · ·Aσ2Aσ1‖

1/k
, (1)

where the quantity ρ(A) is independent of the norm used in
(1). The joint spectral radius (JSR) is a natural generalization
of the spectral radius of a single matrix and it characterizes
the maximal growth rate that can be obtained by taking
products of arbitrary length, of all possible permutations
of A1, . . . , Am. This concept was introduced by Rota and
Strang [1] in the early 60s and has since emerged in many
areas of application such as stability of switched linear
systems, computation of the capacity of codes, continuity
of wavelet functions, convergence of consensus algorithms,
and many others; see [2] and references therein. In particular,
the switched linear dynamical system xk+1 = Aixk, i =
1, . . . ,m, is asymptotically stable under arbitrary switching
if and only if ρ(A) < 1.

There are several undecidability and NP-hardness results
demonstrating the difficulty of computing the JSR in gen-
eral [3], [4]. Nevertheless, the significance of the concept
has encouraged researchers to come up with a variety of
algorithms for providing lower and upper bounds on the JSR
or identifying special cases where it can be computed exactly
and efficiently; see e.g. [5], [6], [7], [8], [2].

The focus of this short note is on the computation of the
JSR of a set of rank one matrices, a problem that was recently
motivated and studied by Liu and Xiao in [9]. In there, the
authors also study the JSR of more general sets of matrices
by approximating them with a set of rank one matrices. It
is claimed in [9] that if the set A consists only of rank one
matrices, then ρ(A) is given by the square root of the spectral
radius of a matrix product of length two from A. We will
show that this is not the case (Example 2.1), though it is
true that the JSR is always achieved by the spectral radius
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of a product of length at most m (Corollary 2.1). Our main
contribution, however, is to show that one can efficiently
compute the JSR of a set of rank one matrices exactly by
using algorithms for the maximum cycle mean problem in
graph theory [10], [11]. This is done in Section II. Some
illustrating examples are given in Section III.

II. MAIN RESULT

We start by recalling some basic facts about rank one
matrices. A real n×n matrix A is rank one if and only if there
exist real vectors x and y in Rn such that A = xyT . The
spectral radius ρ(A) of such a matrix is equal to the absolute
value of its only nonzero eigenvalue which is yTx. The
product of two rank one matrices Ai = xiy

T
i and Aj = xjy

T
j

is AiAj = (yTi xj)xiy
T
j and therefore has rank at most one.

By induction, for any k, products of length k out of a set of
rank one matrices have rank at most one.

Construction of GA. Given a set of rank one matrices
A = {A1, . . . , Am}, Ai = xiy

T
i , we define the graph GA

to be a complete graph with m nodes, one per matrix, and
m2 directed edges eij , ∀i, j ∈ {1, . . . ,m}2, where to edge
e going from node i to node j we assign a weight w(e) =
|yTi xj |.

By a cycle, we will always mean a directed cycle in what
follows. A simple cycle is a cycle that does not visit any node
more than once. We denote the set of all simple cycles in the
graph GA by C, and clearly |C| is finite. Let the sequence of
edges (e1, e2, . . . , ek) form a cycle c. We denote the product
of the weights on the edges by ρc, i.e., ρc =

∏k
i=1 w(ei).

The gain g(c) of the cycle is defined to be ρ1/k
c . Let ρ∗ =

maxc g(c), where c ranges over all simple cycles in C; ρ∗

is called the maximum cycle gain of GA and a cycle cmax
that achieves it is called a gain maximizing cycle.

Given the facts that we recalled about products of rank
one matrices, the proof of the following lemma should be
obvious and is hence omitted.

Lemma 2.1: Let Aσk
· · ·Aσ1 be a product from the set

A = {A1, . . . , Am}. Let c be a cycle in GA consisting of k
edges that go from node Aσ1 to node Aσk

and then back to
Aσ1 (through a single returning edge). Then,

ρ(Aσk
· · ·Aσ1) = ρc.

Theorem 2.2: Consider a set of rank one matrices
{A1, . . . , Am}, and the associated complete directed graph
GA as above. Let cmax be a gain maximizing cycle for GA
of let lmax and ρcmax respectively denote its length, and the
product of the weights on its edges. The joint spectral radius
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is then given by the maximum cycle gain of GA, i.e.,

ρ(A) = ρ1/lmax
cmax

.

Moreover, it is achieved with a finite matrix product, corre-
sponding to the product of the matrices (nodes) in cmax.

Proof: Consider an arbitrary product Aσk
· · ·Aσ1 from

the set A. For some integer s, we can decompose the cycle
associated to this product into the concatenation of s simple
cycles c1, . . . , cs from the set C. We denote the multiplicity
of the simple cycle ci in this decomposition by mi and its
length by li. Using our notation above, we have

ρ(Aσ1 · · ·Aσk
)1/k = (

∏s
i=1 ρ

mi
ci

)1/k

=
∏s
i=1(ρ

1/li
ci )mili/k

≤ ρ
1/lmax
cmax ,

(2)

where the first equality follows from Lemma 2.1, the second
equality is obvious, and the final inequality follows from the
definition of ρcmax

and the fact that
∑s
i=1mili = k.

Let Ak denote the set of all matrix products of length k.
The following characterization of the JSR is well-known:

ρ(A) = lim sup
k→∞

max
A∈Ak

ρ
1
k (A).

See e.g. [2, Chap. 1]. This characterization, together with
(2), immediately imply that ρ(A) = ρ

1/lmax
cmax . The proof of

the latter claim should be obvious.

Corollary 2.1: The JSR of a set of m rank one matrices is
achieved by the spectral radius of a matrix product of length
at most m. (This in particular implies that the “finiteness
property1” always holds for rank one matrices). Moreover,
there will always be a JSR achieving matrix product in which
no matrix appears more than once.

Proof: This simply follows from the fact that a simple
cycle does not visit a node twice.

It is claimed in [9] that it is enough to consider the spectral
radius of products of length two for computing the JSR of
rank one matrices. We next give a counterexample to this
claim, demonstrating that matrix products of length m in
Corollary 2.1 may indeed be required.

Example 2.1: Let ei be the ith vector of the standard basis
of Rm. Let A = {A1, . . . , Am}, where

A1 = e1e
T
2 , A2 = e2e

T
3 , . . . Am = eme

T
1 .

Since {e1, . . . , em} satisfy the orthonormality condition
eTi ej = δij , it follows that ρ(AiAj) = 0 for all i, j ∈
{1, . . . ,m}, and that the only nonzero infinite products are
cyclic repetitions of A1A2 · · ·Am. Thus, for this example
the joint spectral radius is ρ(A) = 1, and it is only achieved
by products of length that are an integer multiple of m.

1See [2] for the definition of the finiteness property and a discussion of
the well-known finiteness conjecture.

A. The maximum cycle mean problem
So far we have established that the computation of the JSR

for a set of m rank one matrices A can be reduced to the
task of finding the maximum cycle gain of GA. The naive
algorithm for doing this would enumerate all possible cycles
of length at most m and have exponential running time in m.
We now show the immediate connection of this problem to
the maximum cycle mean problem (MCMP) in graph theory
which enables us to get a very efficient polynomial time
algorithm for computing the JSR.

In the maximum cycle mean problem, one is given a
directed graph G(V,E) together with a cost function f :
E → R on its edges. Given a path σ = (e1, e2, . . . , ek)
of length k in the graph, its mean weight m(σ) is defined
as m(σ) =

∑k
i=1

f(ei)
k . The maximum cycle mean λ∗ of the

graph is defined to be λ∗ = maxcm(c), where c ranges over
all cycles in the graph. (It is easy to see that the maximum
can always be achieved at a simple cycle.)

Let us define a graph G̃A that is identical to GA in
structure except that the weight on any of its edges eij is
equal to the logarithm of the edge weight of eij in GA, i.e.,
is equal to log |yTi xj |. Then, in view of Theorem 2.2, it is
not difficult to see that the JSR is given by

ρ(A) = eλ
∗/k∗ ,

where λ∗ is the maximum cycle mean of G̃A and k∗ is the
length of a maximizing cycle.

Remark 2.1: In [10], Karp gave an efficient dynamic pro-
gramming based algorithm for computing λ∗ and extracting
a maximizing cycle2. The running time of Karp’s algorithm
is O(|N ||E|). From this it follows that the JSR of a set of m
rank one n×n matrices can be computed in O(m3 +m2n).
More efficient algorithms for MCMP have also appeared
since [12].

Remark 2.2: Since the algorithms for MCMP work for
arbitrary directed graphs and not just for complete ones,
our approach can be immediately extended to the problem
of analyzing stability of rank one linear systems under
constrained switching.

III. EXAMPLES

We present now a few simple examples:
Example 3.1: This example was considered in [9, Ex. 1].

Let

A1 =
[

1
−1

] [
1
1

]T
, A2 =

[
1
1

] [
0
1

]T
.

For this factorization, the corresponding matrix of weights
(i.e., the adjacency matrix of G̃A), is

log
[
0 2
1 1

]
=
[
−∞ log 2
0 0

]
.

The maximum mean cycle is clearly given by {1, 2}, with
cycle mean log 2

2 , and thus the joint spectral radius is
ρ({A1, A2}) = exp( log 2

2 ) =
√

2.

2Karp’s algorithm was originally presented for the minimum cycle mean
problem. However, it is easy to see that the two problems (maximum and
minimum) are equivalent, by changing the sign of the edge costs.
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Example 3.2: The goal of our second example is to show
that the method of finding a “common quadratic Lyapunov
function (CQLF)”, see e.g. [5], which is one of the most
widely used techniques for stability analysis of switched
linear systems (or equivalently approximation of the joint
spectral radius) is not necessarily exact on rank one matrices.
Consider the set of matrices A = {A1, A2}, with

A1 =
[

1 0
1 0

]
, A2 =

[
0 1
0 −1

]
.

It is easy to show (e.g. using the maximum cycle mean
algorithm) that ρ(A) = 1. However, the CQLF approach
can only prove that ρ(A) ≤

√
2.
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APPENDIX: ADDED REMARKS FOR THE REVISION

After our original submission of this work, we notified
the authors of [9] of the error in their characterization of the
joint spectral radius of sets of rank one matrices. They have
since corrected the mistake and provided an alternative proof
of our Corollary 2.1 (see Theorem 3 in Version 6 of [9]),
though an algorithm for the computation of the JSR with
running time polynomial in n and m is not present in that
work.

Also after our initial submission, Vincent Blondel brought
to our attention an earlier and independent work of Gurvits
and Samorodnitsky [13], where they state (using a slightly
different terminology) that the JSR of a set of rank one
matrices is given by the maximum cycle gain of GA [13,
Appendix A]. Their work also demonstrates a different and
very interesting characterization of the JSR: Given a set of
rank one matrices A = {x1y

T
1 , . . . , xmy

T
m}, the JSR is less

than a positive number a if and only if there exist positive
real numbers d1, . . . , dm such that

dj
di
|yTi xj | ≤ a,

for all 1 ≤ i, j ≤ m. We find it interesting to point out
an apparent connection between this characterization and the
well-known multiplicative arbitrage theorem in mathematical
economics. The theorem states that the exchange rates (or
relative prices) between a set of commodities are arbitrage-
free if and only if there exist a set of absolute prices for
the commodities such that the exchange rates are price
ratios [14]. If we treat the entries of the adjacency matrix
of GA as exchange rates, then the arbitrage-free requirement
implies that the JSR of the set A is equal to one. Moreover,
the prices promised by the multiplicative arbitrage theorem
provide the scalings d1, . . . , dm in the characterization of
Gurvits and Samorodnitsky.

Finally, we are grateful to Bernd Sturmfels and Ngoc Tran
for pointing out a curious connection between Theorem 2.2
and tropical eigenvalues. The theorem in fact shows that the
JSR of a set of rank one matrices is equal to the max-
plus tropical eigenvalue of the adjacency matrix of G̃A;
see e.g. [15] for a definition. A further exploration of this
relationship is left for future research.
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